

ЗАДАНИЯ, РЕШЕНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по проверке и оценке решений
II (муниципального) этапа
всероссийской и областной олимпиад школьников
по астрономии

Кировской области в 2016/2017 учебном году Печатается по решению методической комиссии III (регионального) этапа всероссийской и областной олимпиады школьников по школьников по астрономии в Кировской области

Задания, решения и методические указания по проверке и оценке решений задач II (муниципального) этапа всероссийской и областной олимпиад школьников по астрономии в 2016-2017 учебном году / Сост. Е. В. Горшкова, Т. В. Жбанникова, М. А. Кислицына, Д.В. Перевощиков – Киров: Изд-во ЦДООШ, 2016. – 12 с.

Авторы и составители

Жбанникова Т. В.: 5-6.1,5-6.2,5-6.3,5-6.4 Жбанникова Т. В.: 7-8.1, 7-8.2, 7-8.3, 7-8.4. Горшкова Е. В.: 9.1. 9.3. 9.6.

Кислицына М. А.: 10.1, 10.4, 10.5, 10.6, 11.5. Перевощиков Д.В.: 11.1, 11.2, 11.3, 11.4, 11.6

Источники задач

Павлов. С. П. Преподавание физики с элементами астрономии: 5-6.5 Генденштейн Л. Э., Кирик Л. А., Гельфгат И. М. Задачи по физике для основной школы с примерами решений, 7-9 классы: 9.4

Камин А. Космическая одиссея (олимпиады по физике и астрономии), 2015: 5-6.6, 9.5, 7-8.5

Физика и астрономия, 9-11 классы: олимпиадные задания / Оськина В. Т.. – Волгоград: Учитель, 2008: 9.2, 10.2. Засов А.В.: 10.3.

Подписано в печать 08.09.2016 Формат $60 \times 84^1/_{16}$ Бумага типографская. Усл. печ. л. 0,75 Тираж $284\,$ экз.

© Е. В. Горшкова, Т. В. Жбанникова, М. А. Кислицына, Д.В. Перевощиков, 2016 © Государственное образовательное учреждение дополнительного образования «Центр дополнительного образования одаренных школьников», Киров, 2016 г.

ОРГКОМИТЕТУ И ЖЮРИ II (МУНИЦИПАЛЬНОГО) ЭТАПА ОЛИМПИАДЫ ШКОЛЬНИКОВ ПО АСТРОНОМИИ

- 1. Рекомендуемая продолжительность олимпиады для учащихся 5-8-x классов -2 часа, 9-11-x классов -3 часа, не считая времени, потраченного на заполнение титульных листов и разъяснение условий задач.
- 2. Комплект заданий для каждой параллели состоит из 6 задач качественного и расчетного характера. Тестовые задачи не включены, так как не соответствуют уровню олимпиадных задач.
- 3. Сразу после выполнения заданий проводится разбор решений, о чем следует объявить учащимся перед началом олимпиады.
- 4. До проверки члены жюри должны решить все задачи, изучить предлагаемые решения и рекомендации по проверке и оцениванию заданий.
- 5. О сроках апелляции следует также сообщить участникам перед началом олимпиады. В процессе апелляции учащиеся знакомятся со своими результатами, и в случае несогласия с оценкой жюри, имеют право обосновать свое мнение, после чего жюри может повысить оценку или оставить ее без изменения.

ОСОБЕННОСТИ ПРОВЕДЕНИЯ МУНИЦИПАЛЬНОГО ЭТАПА

Во время работы над заданиями участник олимпиады имеет право:

- 1. Пользоваться любыми своими канцелярскими принадлежностями наряду с выданными оргкомитетом.
 - 2. Пользоваться собственным непрограммируемым калькулятором.
- 3. Обращаться с вопросами по поводу условий задач, приглашая к себе наблюдателя поднятием руки.
- 4. Принимать продукты питания, не мешая при этом остальным участника олимпиады.
 - 5. Временно покидать аудиторию, оставляя у наблюдателя свою тетрадь.

Во время работы над заданиями участнику запрещается:

- 1. Пользоваться мобильным телефоном (в любой его функции).
- 2. Пользоваться программируемым калькулятором или компьютером.
- 3. Пользоваться какими-либо источниками информации, за исключением листов со справочной информацией и наглядными пособиями, раздаваемыми Оргкомитетом перед туром.
- 4. Обращаться с вопросами к кому-либо, кроме наблюдателя, членов Оргкомитета и жюри.
 - 5. Производить записи на собственную бумагу, не выданную оргкомитетом.
 - 6. Одновременный выход из аудитории двух и более участников.

При проведении муниципального этапа лица, сопровождающие участников олимпиады, не имеют право подходить к аудиториям, где работают участники, до окончания этапа во всех аудиториях. Участники, досрочно сдавшие свои работы, могут пройти к сопровождающим, но не могут возвращаться к аудиториям. По окончании работы все участники покидают аудиторию, оставляя в ней тетради с решениями.

ЗАДАНИЯ

5-6 классы

- 1. Есть ли в числе спутников планет Солнечной системы такие, которые по своим размерам превосходят Землю? Марс? Меркурий? Луну?
 - 2. Каких затмений не наблюдается на Земле:
 - полных солнечных,
 - полных лунных,
 - частных солнечных,
 - частных лунных,
 - кольцеобразных солнечных,
 - кольцеобразных лунных,
 - полутеневых солнечных?
- 3. Компания Microsoft опубликовала ТОП-10 востребованных профессий будущего, среди которых космические пилоты, архитекторы и гиды. Представьте себя в роли космического гида и предложите маршрут самых перспективных путешествий по добыче полезных ископаемых для Земли. Достаточно включить в маршрут три небесных тела. Началом путешествия считать Землю.
- 4. Какие созвездия, названные в честь животных, окружают Большую Медведицу?
- 5. Если скорость Солнца относительно центра Галактики 250 км/с, какой путь проходит Солнце за один урок в 45 мин?
- 6. Корабль космических пиратов стартовал с планеты A на планету В. Когда пираты пролетели 160 миллионов км, за ними вылетел корабль космической полиции со скоростью в 9 раз больше и догнал на планете B. Чему равно расстояние между планетами A и B?

7–8 классы

- 1. 2017 год объявлен Годом экологии. Возможно, в будущем будет востребована работа космического дворника. Каковы причины появления космического мусора? Как Вы представляете обязанности космического дворника?
- 2. На Солнце произошла вспышка, и вырвался поток плазмы. Через 3 суток поток плазмы достиг Земли. Определите скорость потока плазмы.
 - 3. В чем состоят три главных отличия лунного неба от земного?
- 4. В одном из планетариев находится глобус Земли диаметром 2 м. На каком расстоянии над глобусом необходимо разместить модель МКС (Международной Космической Станции), если необходимо соблюдать пропорции? Настоящая станция МКС находится на высоте 400 км над Землей. Радиус Земли 6400км.
- 5. Наблюдатели ещё две тысячи лет назад отмечали, что земная тень на диске Луны всегда имеет форму круга. Какой вывод о форме Земли сделали античные учёные на основании этого факта? При каком астрономическом явлении наблюдается тень Земли?
- 6. Корабль космических пиратов стартовал с планеты A на планету B. Когда пираты пролетели 160 миллионов км за ними вылетел корабль космической полиции со скоростью в 9 раз больше и догнал на планете B. Чему равно расстояние между планетами A и B?

9 класс

- 1. Гермес, Церера, Кастор, Гаспра. Что лишнее в этом списке?
- 2. Предположим, сегодня ночью вам необходимо наблюдать покрытие звезд Луной, а через неделю состоится затмение. Поясните, в какой части небосвода следует искать Луну сразу после захода Солнца. (Рассмотрите все возможные варианты событий.)
- 3. Расстояние от Земли до самой близкой звезды (не считая Солнца) равно примерно 38 триллионам километров (1 триллион = 10^{12}). Сколько лет идёт к нам свет от этой звезды, и как она называется?
- 4. Как двигалась бы Луна, если бы исчезло тяготение между Луной и Землей? Если бы Луна остановилась на орбите?
- 5. Оцените давление (в атмосферах) в центре нейтронной звезды, если она имеет такую же массу, как у Солнца, при радиусе 10 км? (Объем шара находится по формуле $V=4\pi R^3/3$.)
- 6. Подлетев к незнакомой планете, космический корабль перешёл на низкую круговую орбиту. Смогут ли космонавты, пользуясь только часами, определить среднюю плотность вещества планеты? Как? (Объем шара радиуса R вычисляют по формуле $V = 4\pi R^3/3$.)

10 класс

- 1. Найдите и исправьте ошибки в приведенном тексте: «Пятьдесят пять лет назад произошел первый в истории пилотируемый космический полет. На рассвете 12 апреля 1961 года в 9 ч 07 мин по московскому времени советский космический корабль «Восток-1» стартовал с космодрома Плесецк с первым космонавтом на борту Юрием Гагариным. Совершив 2 витка вокруг Земли, корабль благополучно приземлился через 1 час 48 минут после старта, совершив мягкую посадку в Саратовской области неподалеку от г. Энгельса в районе сёл Смеловка и Подгорное».
- 2. Две звезды одинакового радиуса на одинаковом расстоянии от Земли имеют разные эффективные температуры: 20 000 К и 10 000 К. Какая из них выглядит более яркой в оптическом диапазоне?
- 3. В феврале 2001 г. космический аппарат NEAR впервые совершил мягкую посадку на астероид Эрос. Скорость опускания аппарата на поверхность Эроса составила 2 м/с. Если бы удар оказался упругим, то на какую высоту подпрыгнул бы аппарат от удара. Астероид считать шаром диаметром 30 м и средней плотностью вещества 3000 кг/м³. (Объем шара находится по формуле $V = 4\pi R^3/3$.)
- 4. Любитель астрономии собирается наблюдать в телескоп слабые протяженные объекты, например, туманности. Окуляр с каким фокусным расстоянием он должен выбрать для телескопа с диаметром объектива 150 мм и фокусным расстоянием 750 мм? (Диаметр зрачка человеческого глаза в темноте 6 мм.)
- 5. Марс находится в противостоянии. Оцените, на какое угловое расстояние Марс перемещается по небу за сутки относительно звезд. Орбиту Марса считать круговой с радиусом 1.5 а.е. (Масса Солнца $M = 2 \cdot 10^{30}$ кг, 1 а. е. $= 1.5 \cdot 10^8$ км).
- 6. Любитель астрономии наблюдал за движением кометы, проходившей перигелий 9 февраля 1986 года. Эта комета должна удалиться от Солнца на расстояние в 35 раз большее, чем среднее расстояние от Земли до Солнца, а затем снова пройти перигелий 28 июля 2061 года. Какая это комета? На какое наименьшее расстояние она подойдет к Солнцу?

11 класс

- 1. Оцените, как долго Земля падала бы на Солнце, если бы она вдруг остановилась в своём движении по орбите.
- 2. Почему некоторые звезды выглядят двойными в голубых лучах, но не разрешаются в красных лучах?
- 3. При нынешнем положении Луны океанские приливы и отливы чередуются приблизительно через каждые 6 часов и вдали от берега имеют высоту около 50 см. А как бы изменились высота и промежуток времени между приливами, будь Луна вдвое дальше от Земли?
- 4. Комета Мркоса обращается вокруг Солнца с периодом T=5,46 года. Она может приближаться к Солнцу на минимальное расстояние q=1,52 а. е., при этом её скорость равняется $V_q=28,7$ км/с. На какое максимальное расстояние она может удаляться от Солнца и с какой скоростью она там будет двигаться? При решении можно использовать упрощенную запись закона сохранения момента импульса в виде: mVr= const.
- 5. Частицы солнечного ветра протоны, покинув атмосферу Солнца и двигаясь практически равномерно, достигают орбиты Земли через 3,5 дня. При этом в 1 см³ пространства на расстоянии в 1 а. е. от Солнца находится в среднем 5 частиц. Какую массу теряет с солнечным ветром наше светило за сутки? За год?
- 6. Светимость Веги в 85 раз больше светимости Солнца, ее спектральный класс A0. Найдите радиус Веги. (Радиус Солнца $6,95\cdot10^5$ км.)

УКАЗАНИЯ ПО ПРОВЕРКЕ И ОЦЕНКЕ ОЛИМПИАДНЫХ РАБОТ

- 1. Некоторые задачи могут иметь несколько способов решения. Выбранный учащимся способ решения не должен влиять на максимальную оценку, если верные рассуждения приводят к верному ответу.
- 2. Также следует обратить внимание, что при решении некоторых задач лучше брать более точное значение периода вращения Земли вокруг оси 23 ч 56 мин. Если учащийся использует значение 24 ч и это приводит к незначительному снижению точности ответа, то оценка не снижается.

РЕШЕНИЯ ЗАДАЧ И РАЗБАЛЛОВКА

5-6 классы

1. Спутников планет в Солнечной системе, превышающих размерами планеты Земля и Марс, — нет. Превышает по размерам Меркурий: Ганимед спутник Юпитера и Титан спутник Сатурна. Луну превышают по размерам Ганимед, Титан, Каллисто и Ио — спутники Юпитера.

Разбалловка: 2 балла за то, что спутников планет, превышающих по размерам Землю и Марс,— нет; 2 балла за спутники, превышающие Меркурий; 4 балла за спутники превышающие по размерам Луну.

Максимальная стоимость ответа составляет 8 баллов.

2. Не бывает кольцеобразных лунных и полутеневых солнечных.

Разбалловка: 4 балла за исключение кольцеобразных лунных; 4 балла за исключение полутеневых солнечных.

Максимальная стоимость ответа составляет 8 баллов.

3. Пример маршрута, предлагаемый гидом: Луна, Марс, далее один из астероидов пояса астероидов, который находится между Марсом и Юпитером. Возвращение возможно с астероидом, который проходит недалеко от Земли. Маршрут с другими небесными телами может быть правильным, если не нарушается порядок расположения небесных тел в Солнечной системе.

Разбалловка: 4 балла за Луну и Марс; 4 балла за астероид или другие небесные тела, которые интересны полезными ископаемыми; газовые планеты-гиганты исключаются и не засчитываются за правильный ответ.

Максимальная стоимость ответа составляет 8 баллов.

4. Это Малая Медведица, Рысь, Малый Лев, Жираф

Разбалловка: 2 балла за каждое созвездие; если будет указан Дракон, не стоит это считать ошибкой.

Максимальная стоимость ответа составляет 8 баллов.

5. Для решения задачи используется формула: $S = V \cdot t$. 45 мин = 45 · 60с = 2700 с. Путь, пройденный Солнцем, S = 250 км/с· 2700 с = 675 000 км.

Разбалловка: 4 балла за формулу для расчета пути, по 2 балла за перевод минут в секунды, за вычисление пути.

Максимальная стоимость ответа составляет 8 баллов.

6. Для решения задачи необходимо использовать формулу скорости и выразить расстояние между планетами A и B. V – скорость космических пиратов, 9V - скорость космических полицейских, расстояние между планетами A и B для космических пиратов S = Vt, а для космических полицейских S = 9V(t-160 млн. км/V), получаем уравнение: Vt = 9V(t-160 млн. км/V). Получаем ответ: 180 млн. км.

Разбалловка: no 2 балла за формулу времени; 4 балла за уравнение no условиям задачи; 2 балла за решение уравнения.

Максимальная стоимость ответа составляет 8 баллов.

Максимальное количество баллов за все задания: 48.

7–8 классы

1. Экология в космосе — это защита от космического мусора. Причиной появления мусора являются астероиды, столкновение которых приводит к образованию более мелких осколков. Другой причиной появления космического мусора являются вышедшие из строя космические аппараты. Космический дворник должен наблюдать за появлением космического мусора и устранять его.

Разбалловка: 4 балла за природу космического мусора; 4 балла за обязанности космического дворника.

2. Для решения задачи используется формула скорости, из которой определяется путь, пройденный потоком плазмы: v = S/t. При вычислении необходимо 3 суток перевести в секунды. $3 \cdot 24 \cdot 3600$ с = 259200 с. Скорость потока плазмы: v = 150000000 км/259200 с $\simeq 579$ км/с.

Разбалловка: 2 балла формулу скорости; 4 балла за перевод 3 суток в секунды;2 балла за вычисление скорости.

Максимальная стоимость ответа составляет 8 баллов.

3. Главное отличие вызвано отсутствием атмосферы на Луне, поэтому небо темное всегда, яркие звезды и планеты видны даже днем. С этой особенностью лунного неба связано отсутствие мерцания звезд, отсутствие метеоров. Вторая особенность — это диск Земли, который изменяет свои фазы, но гораздо ярче. Земля на небе Луны больше примерно в четыре раза. Особенностью лунного неба являются затмения: земные и солнечные, которые наблюдаются по-иному. Так солнечное затмение будет длиться несколько часов, а земное затмение будет представлять собой небольшое пятно, которое будет смещаться по земному диску.

Разбалловка: 4 балла за отличия, вызванные отсутствием атмосферы; 2 балла за вид Земли; 2 балла за особенность наблюдения затмений. Вид Земли и особенность затмений могут быть заменены другими отличиями при достаточной аргументированности.

Максимальная стоимость ответа составляет 8 баллов.

4. При решении задачи необходимо определить во сколько раз радиус Земли R больше радиуса глобуса r, для этого R/r = 6400000 м/2 м = 3200000. Далее применить это соответствие (масштаб): 400000 м/3200000 = 0,125 м = 12,5 см.

Разбалловка: 4 балла за расчет масштаба; 2 балла за вычисление высоты модели станции над глобусом; 2 балла за вычисления высоты модели станции над глобусом.

Максимальная стоимость ответа составляет 8 баллов.

5. Древнегреческие ученые (Аристотель) сделали вывод о шарообразной форме Земли, наблюдая тень от Земли в момент полного лунного затмения.

Разбалловка: 4 балла за вывод о шарообразной форме Земли; 4 балла за полное лунное затмение. Максимальная стоимость ответа составляет 8 баллов.

6. Решение задачи 6 для 5-6 классов.

Максимальное количество баллов за все задания: 48.

9 класс

1. Лишнее — Кастор. Это звезда, а Гермес, Церера и Гаспра — астероиды. *Разбалловка: за каждый правильно названный объект по 2 балла.*

Максимальная стоимость ответа составляет 8 баллов.

2. Если предстоит солнечное затмение, то Луна близка к фазе последней четверти и видна с полуночи до утра, то есть искать ее на небе вечером бесполезно. За неделю до лунного затмения Луна близка к первой четверти и вечером находится в южной части неба.

Разбалловка: за указание того, что за неделю до солнечного затмения Луна близка к фазе последней четверти — 2 балла; за указание, что видна с полуночи до утра и не видна вечером — 2 балла; за указание, что за неделю до лунного затмения Луна близка к первой четверти — 2 балла; за указание того, что вечером находится в южной части неба — 2 балла.

Максимальная стоимость ответа составляет 8 баллов.

3. Свет распространяется равномерно, поэтому для вычисления времени мы можем воспользоваться формулой t = s/c, где c – скорость света. Численно: $t = 38 \cdot 10^{15} \text{ м/(3} \cdot 10^8 \text{ м/c}) \cong 12,7 \cdot 10^7 \text{ с} \cong 35278 \text{ ч} \cong 1470 \text{ сут} \cong 4 \text{ года}.$

Это звезда — Проксима Центавра.

Разбалловка: за указание, что свет распространяется равномерно -1 балл; за написание формулы -1 балл; за вычисление времени в секундах -2 балла; за перевод времени в года -2 балла; за указание названия звезды -2 балла.

4. Если бы исчезло тяготение между Луной и Землей, Луна перестала бы обращаться вокруг Земли и стала бы спутником Солнца. По орбите вокруг Земли Луна движется под действием силы притяжения со стороны Земли и центробежной силы. Если Луна остановится, то будет действовать только сила притяжения, и Луна упадет на Землю.

Разбалловка: за указание того, что Луна станет спутником Солнца — 2 балла; за указание сил, действующих на Луну при движении по орбите — 4 балла; за указание того, что Луна упадет на Землю — 2 балла.

Максимальная стоимость ответа 8 баллов.

5. Давление в центре звезды оценим по формуле давления столба жидкости: $p = \rho g h$. Ускорение свободного падения g будет изменяться от максимального значения на поверхности звезды до нуля в центре. Поэтому в формулу подставим среднее значение g, равное половине максимального, а высота равна радиусу звезды R. В итоге $p = \rho(g_{\text{max}}/2)R$.

Максимальное значение ускорения свободного падения найдем по формуле: $g_{\max} = \frac{GM}{R^2}, \ \text{где } M - \text{масса звезды.} \ \Pi\text{лотность вещества звезды и ее объем находят-}$

ся по формулам: $\rho = M/V$, $V = 4\pi R^3/3$. Следовательно, $\rho = \frac{3M}{4\pi R^3}$, а формула для дав-

ления:
$$p = \frac{3M^2G}{8\pi R^4}$$
. Численно: $p = \frac{3\cdot\left(2\cdot10^{30}\right)^2\cdot6,67\cdot10^{-11}}{8\cdot3,14\cdot\left(10^4\right)^4} = 3\cdot10^{33}$ (Па).

Переведём это давление в атмосферы: 1 атм = 101300 Па, то $p = 2.96 \cdot 10^{28} \text{ атм}$.

Разбалловка: за написание формулы давления — 1 балл; за написания ускорения свободного падения как половину от максимального — 1 балл; за написание формулы максимального значения ускорения свободного падения — 1 балл; за написание формулы плотности — 1 балл; за окончательную формулу — 2 балла; за расчет давления в Паскалях — 1 балл; за перевод давления в атмосферы — 1 балл.

Максимальная стоимость ответа 8 баллов.

6. Корабль вращается по орбите под действием силы тяготения и центробежной силы. Запишем второй закон Ньютона для корабля: $F_{\it msz} = F_{\it q}$. Подставив фор-

мулы, получим:
$$G\frac{Mm}{R^2} = ma_u$$
. Так как $a_u = \frac{v^2}{R}$, $v = \frac{2\pi R}{T}$, то $a_u = \frac{4\pi^2 R}{T^2}$ и

$$G\frac{M}{R^2} = \frac{4\pi^2 R}{T^2}$$
. Учитывая, что $M = \rho V$, $M = 4\pi \rho R^3/3$, $G\frac{4\pi R^3 \rho}{3R^2} = \frac{4\pi^2 R}{T^2}$, имеем

$$\rho = \frac{3\pi}{GT^2}$$
. То есть космонавты смогут определить среднюю плотность вещества планеты, пользуясь только часами.

Разбалловка: за написания второго закона Ньютона в общем виде—2 балла; за написание формул для ускорения, скорости и массы — по 1 баллу; за вывод формулы плотности в окончательном виде — 2 балла; за правильный вывод — 1 балл.

Максимальная стоимость ответа составляет 8 баллов.

Максимальное количество баллов за все задания: 48 баллов.

10 класс

- 1. 1) Старт произошел с космодрома Байконур, а не Плесецк.
- 2) Т.к. Байконур находится гораздо восточнее Москвы, то существует разница во времени (на 3 часа больше, но учащийся этой цифры может не знать). Поэтому на Байконуре не мог быть рассвет, а было около полудня.

- 3) Корабль совершил один виток вокруг Земли. В этом можно убедиться, рассчитав минимальный период обращения спутника (по орбите с нулевой высотой).
- 4) Ю. Гагарин опустился на Землю не в спускаемом аппарате, а катапультировался на некоторой высоте над Землей (7 км в соответствии с планом полета). После этого капсула и космонавт стали спускаться на парашютах раздельно.

Разбалловка: за каждую найденную ошибку и ее исправление – по 2 балла.

Максимальная стоимость ответа составляет 8 баллов.

2. Чем выше температура звезды, тем больше мощность её излучения. Звезда излучает во всех диапазонах электромагнитного излучения, и чем выше температура звезды, тем на меньшую длину волны приходится максимум её излучения (закон Вина). Первая звезда излучает больше и в оптическом и во всех диапазонах спектра.

Разбалловка: за правильный ответ – 4 балла; за пояснения – 4 балла.

Максимальная стоимость ответа составляет 8 баллов.

3.Так как удар упругий, то аппарат отскочит от поверхности с той же скоростью, с какой он ударился об нее. Оценим ускорение на поверхности шара, выразив

массу астероида через плотность и объем шара:
$$g = \frac{GM}{R^2} = \frac{4G\pi R^3 \rho}{3R^2} = \frac{4GR\rho}{3}$$
 (1)

Предполагая, что аппарат отскочит на небольшую высоту — такую, что изменением величины ускорения можно пренебречь, получаем: $h = \frac{v^2}{2g} = \frac{3v^2}{4\pi GR\rho} \approx 160$ м (2).

Это высота порядка 1% радиуса астероида, значит, ускорение свободного падения меняется незначительно.

Разбалловка: за предположение о равности величин скоростей до удара и после -2 балла; за формулу (1) - 2 балла; за формулу (2) и окончательный расчет -4 балла.

Максимальная стоимость ответа составляет 8 баллов.

4. Для увеличения видимой яркости слабых протяженных объектов необходимо уменьшить увеличение телескопа, при этом весь свет, собранный объективом, должен попадать в глаз наблюдателя. Пусть диаметр выходного светового пучка равен диаметру зрачка глаза, найдем увеличение телескопа в этом случае: $\Gamma = D/d = 150$ мм/6 мм = 25 (1), где D — диаметр объектива, d — диаметр окуляра (равен диаметру зрачка). То фокусное расстояние окуляра: $f = F/\Gamma = 750$ мм/25 = 0,03 м = 30 мм (2).

Разбалловка: за идею решения и пояснения — 4 балла; за формулу и расчеты (1) — 2 балла; за формулу и расчеты (2) — 2 балла.

Максимальная стоимость ответа составляет 8 баллов.

5. Скорость движения планеты по круговой орбите $v = \sqrt{GM/r}$, где G – гравитационная постоянная, M – масса Солнца, r – радиус орбиты планеты. Тогда скорость движения Земли $v_{_3} = \sqrt{6,67\cdot 10^{-11}\cdot 2\cdot 10^{30}/1,5\cdot 10^{11}}\approx 30$ км/с, Марса

$$v_{_{M}} = \sqrt{\frac{6,67 \cdot 10^{-11} \cdot 2 \cdot 10^{30}}{1,5 \cdot 1,5 \cdot 10^{11}}} \approx 24$$
 км/с. Так как Марс находится в противостоянии, то

он движется в том же самом направлении, что и Земля, поэтому их относительная скорость равна $\upsilon' = 6$ км/с. Отсюда угловая скорость $\omega = \upsilon'/R$, где R – расстояние от Земли до Марса в противостоянии (R = 0.5 a.e.).

Подставляя численные значения, получаем $\omega = 8 \cdot 10^{-8}$ рад/с. Тогда за сутки Марс пройдет угловое расстояние: $\omega = 8 \cdot 10^{-8} \cdot 3600 \cdot 24 \cong 0{,}007$ (рад) $\cong 0{,}4^{\circ}$.

Разбалловка: за формулу скорости — 2 балла; за расчет скоростей Земли и Марса — по 1 баллу; за нахождение угловой скорости — 2 балла; за окончательный ответ — 2 балла.

6. Период обращения кометы вокруг Солнца примерно равен T_{κ} = 75,4 г. Из III закона Кеплера, большая полуось орбиты кометы: $a_{\kappa} = a_3 \cdot \sqrt[3]{T_{\kappa}^2/T_{3}^2} = 1 \cdot \sqrt[3]{75,4^2/1^2} \cong 17,8$ а. е. Тогда расстояние кометы в перигелии (минимальное от Солнца): $r_n = 2a - r_A = 2 \cdot 17,8 - 35 = 0,6$ (а. е.).

Исходя из описания, это была комета Галлея.

Pазбалловка: за определение периода кометы — 1 балл; за формулу и расчет большой полуоси орбиты кометы — 4 балла; за нахождение расстояния в перигелии — 2 балла; за окончательный ответ — 1 балл.

Максимальная стоимость ответа составляет 8 баллов.

Максимальное количество баллов за все задания: 48.

11 класс

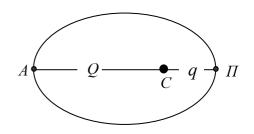
1. На первый взгляд, такая задача может быть решена только методами высшей математики — величина ускорения, с которым Земля падает на Солнце, не постоянна и сильно изменяется в зависимости от расстояния до него. Однако существует и более простой путь. Для этого достаточно представить, что Земля и Солнце — материальные точки с соответствующими массами, и что Земля остановилась не совсем, а обладает очень малой скоростью. Тогда она опишет вокруг Солнца очень вытянутую эллиптическую орбиту, эксцентриситет которой будет приближаться к единице. Значит, для решения задачи можно воспользоваться третьим законом Кеплера: $T^2_{nem}/a^3_{a.e.} = 1$.

Большая полуось такого эллипса будет равна половине радиуса земной орбиты, т.е. 0,5 астрономической единицы. Следовательно, период обращения будет равен: $T = \sqrt{a^3} = \sqrt{0.5^3} = 0.354$ (года). Время падения будет равно полупериоду: $\Delta T = 0.177$ года ≈ 65 суток.

Разбалловка: за понимание того, что задача может быть решена, опираясь на третий закон Кеплера — 4 балла; за правильную запись третьего закона Кеплера в любой форме — 2 балла; за правильный ответ — 2 балла.

Максимальная стоимость ответа составляет: 8 баллов.

2. При наблюдении с небольшим телескопом его предельное угловое разрешение, обусловленное дифракцией, зависит от длины волны света: минимальное расстояние между разрешаемыми звездами обратно пропорционально длине волны. Поскольку у голубых лучей она вдвое короче, то и разрешение вдвое выше.


Разбалловка: за идею зависимости разрешения телескопа от дифракции — 4 балла; за правильное определение зависимости от длины волны - 4 балла.

Максимальная стоимость ответа составляет: 8 баллов.

3. Период между приливами почти не изменился бы (ведь он определяется в основном вращением Земли), а высота лунных приливов уменьшилась бы значительно. Сила притяжения обратно пропорциональна квадрату расстояния между телами, а приливы возникают из-за различия этой силы на разных сторонах Земли, которое определяется отношением размера Земли к ее расстоянию до Луны; поэтому величина приливного эффекта меняется кубически. При удалении Луны вдвое её приливное влияние уменьшится в $2^3 = 8$ раз. Во столько же раз уменьшится высота лунных приливов. Но поскольку существуют еще и солнечные приливы, уступающие сегодня лунным вдвое по высоте, то именно они стали бы определяющими, а лунные — второстепенными. Итак, высота приливов уменьшилась бы вдвое и они стали бы не лунными, а солнечными. Кроме этого, немного укоротился бы период приливов, поскольку Луна кульминирует через каждые 24 часа 50 мин, а Солнце — ровно через 24 часа. Наконец, различие между сизигийными приливами (когда влияние Солнца и Луны складывается) и квадратурными приливами (когда оно вычитается) стало бы вдвое меньше, чем сейчас.

Pазбалловка: за определение изменения высоты 3 балла; за определения периода — 2 балла; за солнечные приливы — 3 балла.

4. Из третьего закона Кеплера определяем большую полуось орбиты кометы a_1 . В качестве второй планеты целесообразно взять Землю, большая полуось орбиты которой равна одной астрономической единице ($a_2 = 1$ a. e.), и период обращения вокруг Солнца $T_2=1$ год. Так как $T_1{}^2/T_2{}^2=a_1{}^3/\underline{a_2}^3,$ выразим

 $a_1 = a_2 \sqrt[3]{T_1^2/T_2^2}$, численно $a_1 = 1 \cdot \sqrt[3]{5,46^2/1^2} = 3,1$ а. е., то есть большая полуось орбиты кометы Мркоса будет равна 3,1 а. е., а большая ось — отрезок $A\Pi$ — равна 6,2 а. е. Отрезок ΠC равен 1,52 а. е. Значит максимальное удаление кометы от Солнца – Q – (отрезок AC) будет равно Q = 6,2-1,52 = 4,68 а. е. Далее на основании закона сохранения момента импульса можно записать: $V_q \times q = V_Q \times Q$. Отсюда $V_{Q} = V_{q}q/Q$, $V_{Q} = 28.7 \cdot 1.52/4.68 = 9.32$ (km/c).

Разбалловка: за запись третьего закона Кеплера и правильное определение величины большой полуоси орбиты кометы оценивается в 3 балла; за определение величины афелийного расстояния – 2 балла; за запись закона сохранения момента импульса и правильное определение величины афелийной скорости – 3 балла.

Максимальная стоимость ответа составляет: 8 баллов.

5. Через сечение в 1 м² на расстоянии $R = 1.5 \cdot 10^{11}$ м от Солнца (земная орбита) в течение суток пролетает $N = n \cdot v$ протонов, где $n = 5 \cdot 10^6$ частиц/м³, $v = R/t = 1.5 \cdot 10^{11}/3.5 = 4.3 \cdot 10^{10}$ м/сут — скорость протонов (примем ее постоянной).

радиусом сферу всю $S = 4\pi R^2 = 4 \cdot 3,14 \cdot (1,5 \cdot 10^{11})^2 = 2,8 \cdot 10^{23} \,\mathrm{m}^2$ за сутки пролетает $S \cdot N$ протонов.

Это соответствует массе $m = SNm_p = 4\pi R^2 nRm_p/t = 4\pi R^3 nm_p/t$. За сутки Солнце теряет $m=2.8\cdot 10^{23}\cdot 4.3\cdot 10^{10}\cdot 5\cdot 10^{6}\cdot 1.67\cdot 10^{-27}=10^{14}$ кг. За год Солнце теряет $M = m \cdot 365,25 = 3,7 \cdot 10^{16}$ кг. Но это составляет ничтожную долю от Массы Солнца $(2 \cdot 10^{30} \, \text{кг})!$

Pазбалловка: за правильную идею и формулы — 4 балла; за верные расчеты — 4 балла. Максимальная стоимость ответа составляет: 8 баллов.

6. Звезда спектрального класса А0 имеет температуру поверхности 10000К.

По закону Стефана-Больцмана светимость звезды $L = 4\pi R^2 \sigma T^4$ (1), где R и Tеё радиус и температура.

и Веги: $\frac{L_C}{L_B} = \frac{R_C^2 T_C^4}{R_R^2 T_R^4} = 1/85$ (2). Отсюда: Сравним светимости Солнца

$$\frac{R_B}{R_C} = \sqrt{85} \frac{{T_C}^2}{{T_B}^2} = \sqrt{85} \bigg(\frac{6000K}{10000K} \bigg)^2 \approx 3.3 \text{, тогда радиус Веги } R_B \approx 2.3 \cdot 10^6 \text{ км (3)}$$

Разбалловка: за определение температуры поверхности Веги – 2 балла; за запись закона Стефана-Больцмана (1) - 2 балла; за сравнение светимостей Веги и Солнца (2) - 2 балла; за нахождение радиуса Веги (3) – 2 балла.

Максимальная стоимость ответа составляет 8 баллов.

Максимальное количество баллов за все задания: 48.